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ExArch Work Package 3

“ QQuality Assurance and
Climate Science Diagnostics
with CMIP5/CORDEX data

archive.

< Uof Toronto, DKRZ and
UCLA.

“ Develops a library of climate
diagnostics parallel to the
development of the ExArch
query system.




Challenges

= For Users For Modeling groups :

“ Diagnostics using high- “ Data converted from the
frequency data require large model’s hybrid grid to
downloads, using up pressure grid can lead to
bandwidth and demanding numerical errors with some
vast storage capabilities diagnostics (e.g. derivatives)

“ Diagnostics used in “t These errors degrade the
intercomparison Studies model’s perceived
increasingly require performance and obfuscates

numerically consistent data explicit conservation laws



USER PERSPECTIVE




ExArch WP3 -Uof'T

“& Will try to answer the users requirements by benchmarking a
series of advanced climate diagnostic using a simple server-side
processing framework.

* Expect to better monitor the role that can be played by
OPeNDAP in conjunction with CDOs.

“& Will prepare advanced climate diagnostics scripts to be ready for
to monitor the performance of the tools developed by ExArch
associated teams. | |




Server-Side Processing:

. An ldeal Case I3

User requests data using a
size-reducing query

: /\ Server evaluates the
Server evaluates the transfer tume

computational time for each size-

reducing operations

Server balances the load between bandwidth and cpu time:
performs some size-reducing operations remotely

!

User receives the intermediary result and
completes the task




Server-Side Processing:

The reality

‘ User requests data using a size-reducing query ‘

v

(Query requests load balancing
estimates from the user

l

Server estimates cpu of server-side operations and

\ generates a local queue

If cpu queue is too long User receives the intermediary result and
| | completes the task




Case Study: Isentropic
5 coordinates 5

For many diagnostics, like the overturning circulation, it is important to
compute zonal and temporal averages along isentropic surfaces:

7
To(.0)) = /0 omalpgv(h, 6, &, 1)]do

6 hourly data in 160 x 320 x 60 x1500 x
lat-lon-hybrid Hyears

A reduction in size by a factor 200 000 per year!

Grid Size / year at N80



Isentropic coordinates

&

Because zonal and temporal averaging are cheap,
the server should compute them:

(1) Convert the meridional velocity and pressure to isentropic coordinates
- |

(2) Compute the isentropic layer mass pg = 55’929

(3) Compute the zonal and temporal average of the product [pgv]

For the user, this process 1s more transparent and does not require the

handling of vast amounts of data.

For the server, bandwidth usage is greatly reduced.




Case Study: Joint Distribution
O . . . O

The mass flux joint distribution can be written as:

1 T AT
M(6.0,6.) =acosor [ [ pav(3,0.0.03(6.(2,0.0.8) ~ 0.)dxd
0 0

It computes the distribution of equivalent potential
temperature on isentropic surfaces

6 hourly data in 160 x 320 x 60 x 1500 x
lat-lon-hybrid Hyears

m lat-theta-equivalent theta 160 x 128 x 128

A reduction in size by a factor 1 000 per year!

Grid Size / year at N80



The Joint Distribution can be used to determine
Lagrangian trajectories of moist flows

Average equiv. pot. temp in

directional components
Poleward, (0.)*

Jomt distribution at 35N for DJF
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Other Diagnostics

“t Many other diagnostics are based on EOFs (e.g. NAO) and thus
require long time-series that are reduced into a few principal
components.

“k Tropical diagnostics of intraseasonal variability relies on the
analysis of space-time spectra (Wheeler and Kiladis, 1999).
Newer diagnostics (Dias 2010, thesis) use average over an
I'TCZ-following latitudinal region.

“t Both methods require time series over large area and have huge
data burdens to produce simplified diagnostics.



MODELING GROUPS
PERSPECTIVE




Funcuonal Data Structure

For theoretical studies of model outputs, it is convenient for the
user to consider the data as ‘functions’:

The data files specifies how mathematical operators should

combine its variables to be consistent with the numerics.

Take, for example, the computation of the Moist Static Energy (MSE):
m = c,T + Lyqy

Depend on moisture parameteriz 4{15 and are thus model-dependent

The MSE flux divergence is an important quantity since it is

constrained by evaporation: Ps ‘
| V- mvdp ~ E — C

This integral will be accurate only if the divergence mimics the conservation law
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Next Generation Dlagnostlcs

T T | Increasmgly dlagnosucs wﬂﬁ want
MSE flux ¢ to consider the data in simplified }

A1B

dynamics models where explicit
conservation properties will be
1mportant s

0.3r

Usmg an EBM for the

attribution of climate change
components 1mpacts:

S—(Ls—Lc)= @ 4

Hwang & Frierson Requires the inversion of the
(2010) Laplacian using model data.
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Conclusion

© = With server-side processing, modeling groups would make the
development of advanced diagnostics easier and their
computation more timely.

*¢ Providing derived data computed from a native grid would
reduce numerical errors and improve model intercomparison.

“t Modeling groups would make sure that their model performs in
the way intended, reducing model bias due to different grid
specification. This is particularly important for CORDEX
expermments.

 Itis hoped that these advantages are worth the extra
programming overhead for the modeling groups.




